Arcing Faults Detection in Switchgear with Extreme Learning Machine

نویسندگان

چکیده

Abstract The robustness of switchgears has critical impacts on the general efficiency power distribution systems. Faulty lead to many unwanted complications for utility bodies, which in turn even bigger issues. In this paper, a remote arcing fault sensing technique is proposed using ELM. By analysing sonic waves emitted, method capable detect possible faults switchgears. Tests and experiments have been conducted investigate performance algorithm detecting these faults. obtained results are analysed time frequency domains. domain analysis, show 93.75% success rate training stage, 95.83% validation 87.5% testing stage. 91.67% 100% It thus concluded that identify

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient smile detection by Extreme Learning Machine

Smile detection is a specialized task in facial expression analysis with applications such as photo selection, user experience analysis, and patient monitoring. As one of the most important and informative expressions, smile conveys the underlying emotion status such as joy, happiness, and satisfaction. In this paper, an efficient smile detection approach is proposed based on Extreme Learning M...

متن کامل

Vehicle detection in driving simulation using extreme learning machine

Automatically driving based on computer vision has attracted more and more attentions from both research and industrial fields. It has two main challenges, high road and vehicle detection accuracy and real-time performance. To study the two problems, we developed a driving simulation platform in a virtual scene. In this paper, as the first step of final solution, the Extreme Learning Machine (E...

متن کامل

Extreme Learning Machine

Slow speed of feedforward neural networks has been hampering their growth for past decades. Unlike traditional algorithms extreme learning machine (ELM) [5][6] for single hidden layer feedforward network (SLFN) chooses input weight and hidden biases randomly and determines the output weight through linear algebraic manipulations. We propose ELM as an auto associative neural network (AANN) and i...

متن کامل

Emotion Detection in Persian Text; A Machine Learning Model

This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...

متن کامل

One-Class Classification with Extreme Learning Machine

One-class classification problemhas been investigated thoroughly for past decades. Among one of themost effective neural network approaches for one-class classification, autoencoder has been successfully applied for many applications. However, this classifier relies on traditional learning algorithms such as backpropagation to train the network, which is quite time-consuming. To tackle the slow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2022

ISSN: ['1742-6588', '1742-6596']

DOI: https://doi.org/10.1088/1742-6596/2319/1/012007